近日,德累斯頓工業(yè)大學(xué)的馮新亮教授、馬克斯普朗克研究所的Klaus Mllen教授展示了一種在有機硫酸鹽水溶液中使用交流電(AC)的新型可伸縮剝離方法,生產(chǎn)出高產(chǎn)量(約80%)高品質(zhì)的石墨烯。
石墨烯研究的全球進(jìn)展預計將為下一代電子產(chǎn)品開(kāi)辟新紀元。然而,人們需要開(kāi)發(fā)可擴展且具有成本效益的高品質(zhì)石墨烯生產(chǎn)技術(shù),才能為這個(gè)奇跡材料提供商業(yè)前景。由于石墨資源便宜而豐富,石墨烯可以低成本生產(chǎn)。因此,石墨的剝離是將單個(gè)石墨烯薄片的突出特征擴展到宏觀(guān)尺度的可靠策略。
目前,已經(jīng)通過(guò)機械力在固體狀態(tài)或液相中成功將石墨烯層從母體石墨晶體上分離出來(lái)。特別地,由于易于合成和潛在的溶液可加工性,已經(jīng)廣泛研究了濕法化學(xué)方法?;瘜W(xué)路線(xiàn)(例如Hummers法)允許以分散的石墨材料與起始石墨片之間的重量比例大量生產(chǎn)石墨烯氧化物(GO),其高產(chǎn)率接近100%。然而,即使通過(guò)使用苛刻的還原方法,殘留的氧化物基團以及各種結構缺陷也徹底影響了還原的GO薄片的電子特征。
新型剝離方法使這兩個(gè)電極同時(shí)實(shí)現雙重插層/剝離,實(shí)現超高生產(chǎn)率。超過(guò)75%的薄片厚度為1-3層,橫向尺寸范圍為1至5毫米。此外,電壓極性的轉換有利于在剝離過(guò)程中的原位還原,并且抑制陽(yáng)極氧化的結構損傷和/或殘留污染,從而提供具有低缺陷密度(的石墨烯片。在單個(gè)石墨烯片上測量的場(chǎng)效應遷移率高達430cm2V-1s-1。更重要的是,具有優(yōu)異溶液分散性的剝離石墨烯為制備混合復合材料和導電膜鋪平了道路。結果顯示,石墨烯包裹的商業(yè)LiFePO4顆粒在鋰離子電池中顯示出顯著(zhù)的循環(huán)穩定性,在500次循環(huán)后以1C速率提供167mAhg-1的高容量。
圖1. 實(shí)驗方案
a)在TBA·HSO4水溶液中通過(guò)交流電流進(jìn)行石墨剝離。兩個(gè)石墨箔分別作為陽(yáng)極和陰極,四正丁基硫酸氫銨(TBA·HSO4)水溶液(0.1m,pH 1.8)作為導電介質(zhì)。
b)陽(yáng)極工作偏置曲線(xiàn),其極性從0.5 T變化為負值。
c)d)剝離前后石墨箔的光學(xué)圖像。一旦施加交流電(10 V,0.1 Hz),兩個(gè)電極上的石墨箔就會(huì )迅速溶解,伴隨著(zhù)氣泡的劇烈噴發(fā)。最終,浸入電解液內的石墨箔將完全剝落。
e)在15分鐘內批量生產(chǎn)EG。在實(shí)驗室試驗中使用了五組石墨箔(10片),在15分鐘內生產(chǎn)5.50克EG片,產(chǎn)率高達80%。
f)在DMF中穩定的EG分散體(0.10mgmL-1)。石墨烯片直接分散在N,N-二甲基甲酰胺(DMF)中,無(wú)需表面活性劑穩定化,得到均勻分散體(0.10 mgmL-1),其穩定至少四周而無(wú)聚集。
圖2. 石墨剝離的應用交流電流的建議機制
SO42- +2e-+ 4H+→ SO2+ 2H2O
TBA- + e - → TBA
圖3. 制備的EG片的表征
a)Si / SiO2晶片上的EG片的SEM圖像。具有廣泛尺寸分布的納米片均勻地覆蓋Si / SiO2晶片。
b)從SEM圖像統計計算薄片尺寸?;?00個(gè)薄片的分析,超過(guò)70%的橫向尺寸在1和5mm之間(圖2b),超過(guò)10%的薄片的尺寸大于5mm。
c,d)EG薄片的AFM圖像和相應的高度分布。剖面圖顯示,EG片的厚度為0.72nm,這與硅晶片上單層石墨烯的厚度一致。有趣的是,發(fā)現片狀邊緣的高度0.95nm,即高于片狀基底面的高度,這可能是由于存在氧部分。
e)EG片的TEM圖像及其SAED圖案。來(lái)自透射電子顯微鏡(TEM)圖像的選擇面電子衍射(SAED)表現出典型的六邊形對稱(chēng)圖案。
f)EG的拉曼光譜(由532nm激光激發(fā))。
圖4. EG的X射線(xiàn)光電子能譜(XPS)和元素分析(EA)
a)EG粉和石墨箔的XPS研究。
b,c)EG(b)和石墨(c)的高分辨率C 1s光譜。
d,e)制造的FET器件的SEM(插入:幾何)和AFM。
f)轉移曲線(xiàn)。
g)單層EG片的電流 - 電壓(I-V)曲線(xiàn)。
AFM和厚度分析(圖3e)證實(shí)了單層薄片的存在。根據轉移曲線(xiàn)和I-V曲線(xiàn),各個(gè)EG片具有430cm2V-1s-1的顯著(zhù)高的空穴遷移率和1.98kΩsq-1的低薄層電阻。
圖5.不同充電/放電速率在1℃至5℃范圍內的放電速率能力
a)EG-LiFePO4混合物的充放電(當前速率為1℃)的第20、200和500次循環(huán)的電壓曲線(xiàn)。
b)各種充放電速率下的放電速率能力。
c)EG-LiFePO4混合物在500次循環(huán)時(shí)的循環(huán)性能及其在1℃下的庫侖效率。
該研究開(kāi)發(fā)了一種簡(jiǎn)單易用快捷的剝離石墨層的方法,通過(guò)交流電剝離石墨以實(shí)現高剝離效率(80%總產(chǎn)率,75%的石墨烯為1-3層)和超高的生產(chǎn)能力 (實(shí)驗室測試中每小時(shí)超過(guò)20克)。剝離的石墨烯薄片尺寸大,缺陷程度低和空穴遷移率高達430cm2V-1s-1。這種直接的方法提供了具有優(yōu)異加工性能的EG分散體,這有利于導電膜和集成雜化物的制造。高品質(zhì)的可處理溶液的EG對于廣泛的應用,如噴墨印刷、太陽(yáng)能電池、催化和復合材料也具有巨大的前景。
資料來(lái)源:材料牛
更多精彩!歡迎掃描下方二維碼關(guān)注中國粉體技術(shù)網(wǎng)官方微信(粉體技術(shù)網(wǎng))
|